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I. Mechanisms
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Radiation damage

Contribution of different processes to radiation 
damage strongly depends on radiation 

wavelength
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Radiation damage by VUV photons

Basic processes contributing:

photoionizations (from outer shells)  and collisional ionizations, 
elastic scatterings of electrons on atoms/ions

long-range Coulomb interactions of charges with external and 
internal fields 

heating of electrons by inverse bremsstrahlung

modification of atomic potentials by electron screening and ion 
environment

recombination (3-body recombination)

short range electron-electron interactions
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Radiation damage by VUV photons

Also other processes may contribute:

 sequential ionization, e.g. Xe→Xe*, Xe*→Xe+

 

 multiphoton ionization

 many-body recombination

 ionization by internal electric field (at the edge of the sample)

 ....
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Radiation damage by VUV photons

               Specific interactions in detail:

                           plasma effects
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Plasma created by VUV photons

Example:
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Plasma created by VUV photons
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Plasma created by VUV  photons
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Plasma created by VUV photons
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Plasma created by VUV photons
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Plasma created by VUV photons
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Radiation damage by VUV photons

               Specific interactions in detail:

                     inverse bremsstrahlung



 B. Ziaja: Radiation damage by FEL 14

Inverse bremsstrahlung
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Inverse bremsstrahlung
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Inverse bremsstrahlung

Classical impact model cannot be applied in case 
of cold photoelectrons, as bmax< bmin
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Inverse bremsstrahlung

Quantum emission or absorption of n photons [Kroll, Watson]: 
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Inverse bremstrahlung

Field strength parameter, s:
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Electron screening and ion environment

Example: Sample of Xe atoms

← before ionization (neutral)

  ← after ionization, if electrons 
       stayed inside (ion potential 
       screened by electrons)

←after ionization, if some 
    electrons escaped (ion 
    potential barriers overlap)



 B. Ziaja: Radiation damage by FEL 20

Radiation damage by X-ray photons

Other processes than in VUV case give dominant 
contribution to radiation damage:  inner and outer 

shell ionizations. No inverse bremsstrahlung.

 Warm/hot plasma is created.
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Radiation damage by X-ray photons

Basic processes contributing:

photoionizations (from outer and inner shells with subsequent 
Auger decays)  and collisional ionizations, elastic scatterings of 
electrons on atoms/ions

long-range Coulomb interactions of charges with  internal fields

modification of atomic potentials by electron screening and ion 
environment

recombination (3-body recombination)

short range electron-electron interactions

Compton scattering

         No inverse bremsstrahlung at these radiation wavelengths!
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Radiation damage by X-ray photons

               Specific interactions in detail:

             photo- and collisional ionizations
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Photoionizations
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Auger effect
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Collisional ionizations by electrons

Primary ionization
(photo- and Auger)

Secondary ionization

ElectronsPhotons
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Collisional ionization by electrons

Two energy regimes of electrons released by X-ray photons:
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II. Models
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How to model radiation damage within irradiated 
samples?
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Particle approach
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Particle approach

Advantages:

first-principles model

transparent algorithm

no complex numerics

Disadvantages:

High computational costs which scale with the number of 
participating particles

statistical errors
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Particle approach

   Methods:

stochastic Monte-Carlo method

deterministic Molecular Dynamics simulations

Particle-in-Cell method
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Particle approach

Example: MC code for modelling Auger-electron cascade in 
diamond
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Particle approach

Example: MC code for modelling Auger-electron cascade in 
diamond
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Particle approach

Example: MC code for modelling Auger-electron cascade in 
diamond
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Particle approach

Example: MC code for modelling Auger-electron cascade
in diamond 

Results: spatio-temporal evolution of electron cascade

Electron range:
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Particle approach

Example: MC code for modelling an Auger-electron cascade in 
diamond 
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Transport approach

Evolution of larger systems described 
in terms of collective density function:
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Transport approach
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Transport approach

   Methods:

Semiclassical Boltzmann equation

Hydrodynamic models
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Transport approach
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Transport approach
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Working with Boltzmann equations

 

Applied mathematics

Solid state physics

Atomic physics

Plasma physics

Algorithm Contributing
physical processes

Boltzmann solver
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Why to use statistical Boltzmann approach?

first-principle approach

single-run method

computational costs do not scale with number of atoms

                                        Disadvantage:

requires advanced numerical methods
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Transport approach
Example:  Boltzmann solver for radiation damage within Xe clusters

irradiated by VUV FEL photons
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Hydrodynamic models

Reduced form of Boltzmann equations: simplifying assumptions 
applied (e.g. only collective transport component of velocity treated, 
thermalisation of electrons assumed, local force equilibrium 
assumed) - standard tool for plasma simulations
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Conclusions, questions and outlook

Understanding of radiation damage within FEL irradiated 
samples important for theory and experiment

Description of radiation damage more complicated in case of 
irradiation with VUV photons that with X-ray photons

Choice of the method for modelling the radiation damage 
depends on the size and structure of the sample:

    (particle method for smaller, complex samples; 

     transport method for large samples of regular structure)


