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Radiation damage

Contribution of different processes to radiation
damage strongly depends on radiation
wavelength
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Radiation damage by VUV photons

Basic processes contributing:

= photoionizations (from outer shells) and collisional ionizations,
elastic scatterings of electrons on atoms/ions

= |ong-range Coulomb interactions of charges with external and
internal fields

= heating of electrons by inverse bremsstrahlung

= modification of atomic potentials by electron screening and ion
environment

= recombination (3-body recombination)

= short range electron-electron interactions
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Radiation damage by VUV photons

Also other processes may contribute:

= sequential ionization, e.g. Xe—Xe*, Xe*—Xe+
« multiphoton ionization
* many-body recombination

= jonization by internal electric field (at the edge of the sample)
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Radiation damage by VUV photons

Specific interactions in detail:
plasma effects
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Plasma created by VUV photons

Example:
Xenon clusters — atomic density, 14 = 1022 — 10% ¢m™3 —  estimated
electron density n. = 10%% — 10* ¢m—3 — dense plasma
Photoelectron energies, Ky, (A = 98 nm) = 0.6 eV

Ean(A=32nm) = 266 eV

|

Temperature of emitted photoelectrons,
Ton(A =98 i) = 0.4 €V + cold plasma
Tor(A =32 nm) = 17.6 €V & warm plasma
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Plasma created by VUV photons

No experimental evidence ¢n electron temperatures
from first FEL experiment

At early stages:
cold, dense plasma
— strongly coupled,

At later stages:
warm plasma— classical, ideal

— plasma (can be treated
degenerate plasma R classically)
{(quantum treatment of
many body interactions
necessary)
4

Difficult unified treatment of these two regimes
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Plasma created by VUV photons

If heating mechanism efficient, classical treatment justified

In any case we shall monitor Coulomb coupling and degeneracy parameters
during the exposure ...
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Plasma created by VUV photons

Cold, dense plasma effects
—degenerate: quantum statistics have to be used

—strongly coupled: electron and icns are quasiparticles with density
dependent self-energies moving inside a dense interacting medium

Screening by electren-ion medium:
depends on impact velocity, v

Vst (K} 0{w—kv
Versllke,w) = Eg(k}ﬁi{]jeik}m}}—l

Static, ifkw rs 0

Dynamic, if we > kv > wy & only ciectrans,

if wie 0= wy =2 kv & cloctrens and ens,

talg, ey 0 plICHTE frequencies fer electrans and iens
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Plasma created by VUV photons

Effects of strong coupling and degeneracy:

—self energy of quasiparticles: electron and ions

~lowering of continuum level

—lowering of ionization thresholds

—merging of bound states into continuum at high densities (Mott effect)
—(ynamic screening

—changes in photo-, collisional, and recombination rates

~Pauli blocking {phase-space occupation effects)
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Plasma created by VUV photons

Proper treatment of cold dense plasma possible with complicated
quantum kinetic equations [Rostock group|

Some dense plasma effects can be included inte our semi-
classical model:

—quasiparticle self energies
—lowering of continuum level
—lowering of icnization thresholds

—changes in photo-, collisional, and recombination cross sections due to
the screening
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Radiation damage by VUV photons

Specific interactions in detail:
inverse bremsstrahlung
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Inverse bremsstrahlung

Classical impact mode! to start with:

elastic scatterings of electron on ions — gain of electron thermal energy
due te momentum transfer

Inttial and final electron velocities:
v =u+ vgand v':u-l—v[-,
va, vy, thermal velocities,

o o B : :
u = —=sin(wt), quiver velocity,

> 7 ¥ :
ﬁér%;. where & = Kge cos(wit), strength of electri
o field of polarization ¢
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Thermal energy gain, Ay = —mu(vh — vg)
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Inverse bremsstrahlung

Average energy gain per unit time

(%), = %% (%)

fl'ﬂ'ED
where:

ni, ion density in plasma

in A, Coulomb logarithm dependent on cut-offs, In A ~ In (byuy/bmin),
Dinaz = ’U/‘-'J- i = mﬂﬂ:()\ﬂrng!ie: bQEFG)

7, ctharge of a point-like ion
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Inverse bremsstrahlung

Classical impact model cannot be applied in case
of cold photoelectrons, as bmax< bmin
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Inverse bremsstrahlung

Quantum emission or absorption of n photons [Kroll, Watson]:

d : E
() Govimio) ~ 22525 0(Q)

i

where:

Q = mi(vh — vg), momentum transfer

s = 2201 field strength parameter

&L= E+nliw (| n|> 0 ), energy gain or loss

U(Q), Fourier transform of the interaction potential, U(r)
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Inverse bremstrahlung

Field strength parameter, s:

5 << 1 = Ji(sz) ~ (52)*" — one-photon exchanges dominate

s> 1 — many-photon exchanges take place — limiting case can be
identifiec with the classical impact picture
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Electron screening and ion environment

Example: Sample of Xe atoms

«— before ionization (neutral)

——r T T > «— after ionization, if electrons

\ r. X 1. ,\’ N A ¢ I - . .
, y \\ , Py \ ,,\ \ stayed inside (ion potential

screened by electrons)

\\ , I \ \ 'I
\\ l l l «—after ionization, if some
electrons escaped (ion

potential barriers overlap)
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Radiation damage by X-ray photons

Other processes than in VUV case give dominant
contribution to radiation damage: inner and outer
shell ionizations. No inverse bremsstrahlung.

Warm/hot plasma is created.
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Radiation damage by X-ray photons

Basic processes contributing:

= photoionizations (from outer and inner shells with subsequent
Auger decays) and collisional ionizations, elastic scatterings of
electrons on atoms/ions

= |ong-range Coulomb interactions of charges with internal fields

= modification of atomic potentials by electron screening and ion
environment

= recombination (3-body recombination)
= short range electron-electron interactions
= Compton scattering

No inverse bremsstrahlung at these radiation wavelengths!
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Radiation damage by X-ray photons

Specific interactions in detail:
photo- and collisional ionizations
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Photoionizations

Photoelectric effect: the dominant source of
radiation damage (~90 % of interactions for
light elements C, N, O, 8)

5% of photoemissions: outer-shell event, sin-
gle electron emitted

95% of events: inner-shell event, Auger effect
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Auger effect

<

K-hole (lifetime 1-10 fs)

<

L-shell electrons fall into K-hole

=

energy transfer

I

Auger electron E ~ 0.25keV

photoelectron ~ 12 ke

WA.-"F".

e
Alger electron ~ 0.25 keV
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Collisional ionizations by electrons

Primary ionization Secondary ionization
(photo- and Auger)

S ow‘./;

—® *
-~ /*. W.\ 6

Photons Electrons
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Collisional ionization by electrons

Two energy regimes of electrons released by X-ray photons:

o Photoelectrons: & = 12 keV, Ap.proglie &
0.1 A, fast, propagate almost freely through
the medium, leave small samples (10-100
nm) in a few femtoseconds

o Auger electrons: & = 0.25 keV, Ap.proglie &
0.8 A, slow, interact multiply with neigh-
bouring atoms, interaction includes exchange
terms

Auger electrons are the main source of
secondary ionization
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ll. Models
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How to model radiation damage within irradiated
samples?

Computer simulations of damage processes:
— testing influence of specific interactions on ionization
dynamics

— accurate time characteristics of damage processes
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Particle approach

Sclving equaticns of motion for each particle
at each time step

dr
— =V
dt
Results are averaged
over the total numer
dv of simulated events
dt

Scattering probabilites: obtained with cross

sections
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Particle approach

Advantages:
= first-principles model
« transparent algorithm

= No complex numerics

Disadvantages:

= High computational costs which scale with the number of
participating particles

s statistical errors
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Particle approach

Methods:

« stochastic Monte-Carlo method

« deterministic Molecular Dynamics simulations

« Particle-in-Cell method
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Particle approach

Example: MC code for modelling Auger-electron cascade in

diamond

Electrons interact multiply with atomic clus-
ters:

e elastically - with no energy loss

A

elast ™ ol gat

o inelastically - with energy loss w, either
transferred to a cluster, or to another elec-
tron

-

inelast ™ Fo

Y

Cascade of secondary electrons
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& ® -
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Particle approach

Example: MC code for modelling Auger-electron cascade in
diamond

e Elastic collisions: muffin-tin potential

. par- e Inelastic collisions:
tial wave expansion, phase shifts

optical models based
on an atomic-oscillator model of dispersive

media, dielectric function e(q,w), differen-

e _ tial inverse mean free path 7(F, w)
Colast — .F{!_z Z (2'{I e 1) sz 5!
. d
| r(B,w) ~ [ Iml—e(g,w) ]
}‘e!ast e

1
Telgat "U’

Aine!ast = f dw T(E c"')
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Particle approach

Example: MC code for modelling Auger-electron cascade in
diamond

Time evolution of the cascade Fr; depends on the electronic band structure.
Here: Fermi free-electron band.

pome o B- 0
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- LT
i r sl F -t £
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Particle approach

Example: MC code for modelling Auger-electron cascade
iIn diamond

Results: spatio-temporal evolution of electron cascade

Electron range:
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Particle approach

Example: MC code for modelling an Auger-electron cascade in

diamond
Resulls: spatio-temporal characteristics of the cas-

cade
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Transport approach

Evolution of larger systems described
in terms of collective density function:
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Transport approach

Statistical description of a classical system in terms of density functions
p(r, v, t) in phase space

p(r, v, t}d* d%v is a number of particles
located at r of velocity v in the phase space

element d3% d¥v .,’ /.

fp(r,v,t)dardau = ML}

® ‘e
o ®

fp(r,v,t} d’r = nv, t) .,

|

=
o=
H

e
T

] plr, v, 1) d'v
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Transport approach

Methods:

= Semiclassical Boltzmann equation

» Hydrodynamic models
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Transport approach

Time evelution of the system

Beoltzmann equaticn

t — t4di
Gip + véhe +adsp =0

T — T4+ vdil

If there is a collision or a change of particle

number:
v — v} adt

Gip + vOrp +abyp = Qp, 1, v, 1},

plr+vdt,v 4+  adi,t+di)drdy where 2 is a source (collision) term.
— p(r,v,t}dsrdau =1

B. Ziaja: Radiation damage by FEL 40



Transport approach

Boltzmann equations are able to follow

non-equilibrium processes
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Working with Boltzmann equations

Boltzmann solver
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Why to use statistical Boltzmann approach?

first-principle approach

single-run method

computational costs do not scale with number of atoms
Disadvantage:

requires advanced numerical methods

B. Ziaja: Radiation damage by FEL

43



Example:

Transport approach

Boltzmann solver for radiation damage within Xe clusters
irradiated by VUV FEL photons

Global parameters as functions of time

Fast heating rate (with modified atomic potential)
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a) total number of particles in the cluster, b) electron temperature,
c) number of electrons and ions up to +3, and dj ions +4 up fo +8
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Hydrodynamic models

Reduced form of Boltzmann equations: simplifying assumptions
applied (e.g. only collective transport component of velocity treated,

thermalisation of electrons assumed, local force equilibrium
assumed) - standard tool for plasma simulations
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Conclusions, questions and outlook

= Understanding of radiation damage within FEL irradiated
samples important for theory and experiment

= Description of radiation damage more complicated in case of
irradiation with VUV photons that with X-ray photons

= Choice of the method for modelling the radiation damage
depends on the size and structure of the sample:

(particle method for smaller, complex samples;
transport method for large samples of regular structure)
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