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Damage experiment @ FLASH 
Experimental setup
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Damage experiment @ FLASH 
Experimental setup



Damage experiment @ FLASH 
Irradiation conditions

Wavelength [nm] 13.4 – 32.5
89 – 98

Pulse duration [fs] 10 – 50
30 – 100

Pulse energy [μJ] 0.1 - 20

Spot diameter [μm] 20 – 30
15 – 100

Fluence [mJ/cm2] 1 - 5000

Pulse number 1
10-100



Damage
„Post-mortem” analysis

Optical microscopy

Raman spectroscopy

AFM 

X-Ray Diffraction
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Si – bulk (11 pulses@89 nm)
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Si – bulk (1pulse@32.5 nm)
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a-C – thin layer on Si
@89 nm

• Amorphous-carbon samples 
(a-C) consisted of 46 nm-thick 
a-C layers magnetron-sputter-
deposited on a silicon wafer.  
The surface roughness of the 
a-C layers were less than 3 Å. 
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a-C – thin layer on Si
@32.5 nm
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SiC & B4C
• SiC slabs were fabricated using 

chemical-vapor deposition and 
had an average grain size of 7.5 
mm.  After polishing and prior to 
exposure, the surface roughness 
of the samples was analyzed 
using atomic-force microscopy 
(AFM).  The root-means-square 
(RMS) roughness of the sample 
surface was 1.8 Å.

• B4C slabs were fabricated by hot-
pressing of B4C powder and had 
an average grain size of 5 mm.  
The polishing of the hot-pressed 
B4C produced numerous rip outs 
of B4C grains.  A smooth surface 
was achieved in between the rip 
outs, with an RMS surface 
roughness of 5 Å. 
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SiC multilayer
• The multilayer films consisted 

of ten Si/C bilayers, sputter-
deposited on a Si (100) wafer.  
In order to detect radiation-
induced changes of the 
multilayer, we chose multilayer 
design that provided a narrow 
angular reflectivity peak at a 
reflection angle of 45º and a 
wavelength of 32 nm.  This 
narrow bandwidth makes the 
multilayer very sensitive to any 
changes in the multilayer 
structure or the optical 
constants of its constituents 
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Damage thresholds [mJ/cm2]
λ = 89 nm λ = 32.5 nm 

Si < 4 Si 87 ± 45 

a-C <10 a-C 65 ± 30 

SiC 141 ± 70

B4C 197 ± 100 

CVD 
diamond

156 ± 75



Dynamic of damage processes
2 color pump & probe



Transmission/Reflectivity
during the pulse

• 50 nm Si film
• 300 nm Al film
• SiO2 monocrystal
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Transmission/Reflectivity
during the pulse

During the pulse

Reflectivity, optical constants unchanged
Multilayer d spacing not changed by more 
than 0.3 nm

Si/C multilayer

After pulse

Plasma forms, layers ablate
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Transmission/Reflectivity
pump-probe

~10 fs

~2 ps
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Conclusions
• The optical response at 32.5 nm wavelength of the investigated materials 

(Si, SiO2 – bulk and Si, Al – thin foils) appears to be linear up to the 
maximum attainable intensities (≈ 1014 W/cm2) and deposited energy 
densities in excess of 100 eV per atom [publication in preparation].

• The multilayer performance does not degrade during the damaging pulse 
Initial results from one-colour pump-probe experiments in 2006 suggest 
that the optical properties of the multilayer do not change significantly 
from 10 fs up to 2 ps after excitation.

• First time-resolved reflectivity measurements in the visible range of solid
surfaces (Si, GaAs) irradiated with FLASH have been investigated using 
picosecond optical imaging. Distinct differences in the material response 
are found in comparison to fs optical excitation.  These differences are 
attributed to the increased penetration depth of the XUV-radiation and the 
absence of any absorption nonlinearities.

• Damage thresholds were obtained for a variety of inorganic materials in 
the wavelength range 13.5 nm - 100 nm The threshold fluence for 
surface-damage is comparable to the fluence required for thermal 
melting. For larger fluences, the crater depths and morphology suggest 
that the craters are formed by ejection of (2-phase) molten material.  For 
optical lasers such behavior is only known in the case of cw- and long-
pulse irradiation.
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