

Workshop on

Technical Challenges of the Proposed European XFEL Laboratory, DESY, Hamburg, Oct. 30/31, 2003

XFEL laboratory concept

Thomas Tschentscher (DESY)

Topics :

• Undulators for FEL and spontaneous radiation

- Photon beamlines including x-ray optics
- Experiments and experimental facilities

XFEL laboratory concept

- XFEL is intended as a multi-user facility
- Concept of distribution of one electron beam to many beamlines
- Specification of beamlines and their parameters

Baseline assumptions

- FEL radiation experiments in the x-ray regime (200 eV 12,4 keV)
- User experiment requirements
- Provide linear and circular polarised radiation

Efficient usage of electron and photon beams

- Use spent beam for FEL and spontaneous radiation undulators
- Parallel operation of as many experiments as possible
- Minimise down-time of beamlines/experiments

Basically

- One electron beam into 2 beamlines
- Make use of electrons in either 2 FELs or 1 FEL+2 sp. Undulators

SASE 1

Photon energy range 1,0-12,4 keV (E_e and gap tuning) Tunability at 20 GeV : 4,0 keV (gap=10mm) to 12,4 keV (gap=17mm)

Spectroscopy and coherence experiments

SASE 2

Photon energy range 3,1-12,4 keV (E_e tuning)

- Diffraction experiments
- Extension to 14,4 keV photon energy
- Full coherence seeding

SASE 3

Photon energy range 0,2-3,1 keV (E_e and gap tuning) Tunability at 10 GeV : 200 eV (gap=10mm) to 800 eV (gap=17mm)

- Soft X-ray spectroscopy and coherence experiments
- Atom, molecule, cluster, and plasma physics

Spontaneous synchrotron radiation: U1, U2

Photon energy range 12,4 keV to few 100 keV Pulse duration of electron beam: ~188 fs FWHM Photons per pulse ~10⁸ for 20-300 keV Peak brilliance of the order 10²⁸ for 20-300 keV

- Ultrashort, hard x-ray radiation pulses
- Study dynamics in condensed-matter & materials science applications

SASE 1

- Planar, gap tunable undulator
- Saturation length 170 m (12,4 keV, 20 GeV)

SASE 2

- Planar undulator
- Saturation length 145 m (12,4 keV, 20 GeV)

SASE 3

- Polarisation selectable undulator (Apple design)
- Gap tunable
- Uses spent beam of SASE 2
- Saturation length 95 m (3,1 keV, 20 GeV)

U1, U2

- Planar, gap tunable (minimum gap 6mm)
- Use spent beam of SASE 1
- Magnet length 50m

For details of undulator parameters and technology:

see posters by E. Schneidmiller and J. Pflüger

Total length includes

- Saturation length for highest photon energy
- + 22% for intersections (vacuum, quadrupoles, phase unit)
- + 20% contingency (field errors, misalignment, ...)

SASE 1: 250m SASE 2: 220m SASE 3: 150m U1,U2: 61m

Building space allows further options

· Generation of fully coherent radiation by seeding

 \Rightarrow this scheme will be installed and verified at the VUV-FEL

⇒ for x-rays: Diamond mono. E. Saldin et al., NIM A<u>475</u>, 357(2001)

• Bunch shortening using a chirped electron beam

⇒ to be tested for X-rays at LCLS. C.B. Schroeder et al., NIM A<u>483</u>, 89(2002)

• Generation of radiation at photon energies other than 1st harmonic

 \Rightarrow Higher harmonics generation

 \Rightarrow Visible light generation for pump-probe experiments

Undulator realisation

Design outline

- 5m long magnet structures
- 1,1m intersection
- Hybrid, perm. magnet technology
- Smallest magnetic gap 10mm
- Adjustable gaps

Challenges remain

- Magnet quality & design
- Mechanics & movements
- Mass production
- Alignment
- Commissioning

For details of undulator technology and photon beam based alignment : see posters by J. Pflüger & M. Tischer

FEL radiation beamlines

- Preservation of FEL radiation properties : duration, coherence, intensity
- Sufficient length of ~700m (12,4 keV) and ~350m (200 eV)
 - \Rightarrow Average power density similar to 3rd gen. SR sorces
 - ⇒ Source demagnification > 1000 possible
 - \Rightarrow Requirements due to electron beam & conventional facilities

Generic beamline design

- · Long beamlines in tunnels seperated from experimental hall
- Photon diagnostics, absorption cell, beam stop
- Standard x-ray optics here (10⁻⁴-bw monochromators, mirrors)
- Beam stop for bremsstrahlung
- Photon beam distribution to experiments

For details of photon beamline design: see poster by U. Hahn

Integrate *standard* x-ray optics into beamline

- 10⁻⁴-bandwidth monochromator
- Mirrors (plane, focussing)
- Fixed-exit geometry
- Block direct beam

Special optics in experiments area

- High resolution monochromators
- Focusing with high demagnification
- · Beam splitters and delay units

Optics requirements

- Propagate coherent radiation
- Withstand power load

For details of X-ray optics: see poster by H. Schulte-Schrepping

FEL radiation power development

X-ray source					optics	sample focus
	0 m	100 m	200 m 300	m 400 m	500 m 60	l
Source	E [keV]	power [W]	source distance [m]	beam size [FWHM-µm]	power density [W/mm²]	remarks
FEL	12,4	72	0	110	5.200	end of undulator
			550	440	330	x-ray optics
			750	600	180	experiments
	3,1	300	0	95	30.000	end of undulator
			270	810	400	soft x-ray optics
			370	1110	210	experiments
	0,2	800	0	65	160.000	end of undulator
			270	7290	13	soft x-ray optics
			370	9990	7	experiments
Sp. rad.	50	0,08	270	780	0,1	x-ray optics
3 rd SR	all	>100	40	1000	350	x-ray optics

Characteristics

- Cryogenically cooled (~ 70 K)
- Bandwidth ~10⁻⁴
- Thickness ~100µm
 - \Rightarrow Energy absorption per pulse at 12,4 KeV ~100 µJ
 - \Rightarrow Temperature jump ~1 K assuming thermal processes
 - \Rightarrow No degradation of reflection during pulse is expected

Response to pulse train

120

Mirror considerations

Performance requirements

- Preservation of brilliance
 ⇒ Micro-roughness ~0,1nm
 - ⇒Figure error <~1µrad
- Diffraction due to coherency ⇒ at least 5σ acceptance
- Minimise power absorption
 - \Rightarrow Operate below θ_c
 - \Rightarrow Use low Z coatings

Proposed realisation

- water-cooled Si mirrors
- dynamic bending
- θ<~1mrad (θ_c~3mrad@12,4 keV)
 - mirror length ~1m \Rightarrow ~6 σ acceptance (12,4 keV, 500m)

For details of photon beamline design: see poster by U. Hahn

High-resolution, high-throughput monochromator

- PGM design, energy resolution >10.000
- coverage of full energy range using 600 & 1200 l/mm gratings
- Similar monochromator at VUV-FEL (M. Martins et al.)

Layout as described in TDR-2001 based on design by R. Follath, F. Senf (BESSY)

Beamlines include

- Optics hutch for special optics
 - \Rightarrow High-resolution monos
 - ⇒ Beam-splitter/delay units
- Extreme focusing integrated in experimental setup
- Up to 3 experimental stations
- Control area
- 17 m spacing between BL
- 18 m long, 4 m high
- X-ray shielding

Efficient use of FEL beam

- Fast switching of experiments
- Preperation & pre-alignment

Optical femtosecond laser for pump-probe studies

- \Rightarrow Central laser or synchronisation of many lasers
- \Rightarrow Laser beam distribution

Preparation laboratories

- \Rightarrow Sample preparation and testing
- \Rightarrow Off-line tests using optical laser
- \Rightarrow Optics and detector labs

Electron beam parameters

 \Rightarrow wide range of photon energies

 \Rightarrow Flexible operation will be possible

Undulators

- \Rightarrow 3 SASE FEL undulators
- \Rightarrow 2 undulators for spontaneous rad.
- \Rightarrow Parameter definition according to experiments
- \Rightarrow Remaining R&D work has been started

Photon beamlines & x-ray optics

- \Rightarrow Long beamlines with standard x-ray optics
- \Rightarrow Main concerns are power and coherence preservation
- ⇒ Required performance close to today technology

Experiments

- \Rightarrow Dedicated experiments with ancillary laboratories
- \Rightarrow Detection will require 2D detectors with very fast read-out

The end