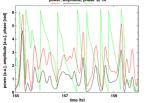
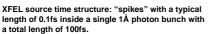
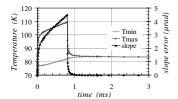
X-ray optics requirements


-830 -


utter


XFEL beamline with all elements located inside the tunnel building. Special optical elements, e.g. tight focusing optics, will be installed in the experimental area located inside the XFEL laboratory.

photon beam timing: intrinsic time scales

power: thermal management

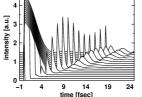
The challenge of cooling a diamond crystal (20mm³) with liquid N_2 , absorbing 2J during a 0.8ms long XFEL photon bunchtrain (L. Zhang, A. Freund, Th. Tschentscher, H. Schulte-Schrepping)

precision requirements

techniques.

(sch

from XFEL-TDR).



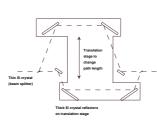
Development of micro roughness and slope error of synchrotron radiation mirrors over the last 10 years measured of a perfect mirror area of 160 and 400 mm

Single Be-lens and lens assembly for the SLAC-SPPS beamline. Alternative materials will be C and B_4 C, other configurations are KB-like decoupled devices etched in C or Si.

The effective opening at 1Å wavelength is 1.2mm. (lenses by B.Lengeler, Ch. Schroer)

time [fsec] Intensity response to a delta pulse of Bragg crystals (diamond 111) with different thickness (from 0.1µm to 11.3µm) vs. time (W. Graeff).

Temperature distribution in a cylindrical


liquid nitrogen cooled diamond crystal hit by the beam in the thin central part

Ultra glancing angle (<1mrad) mirror setups have to be further evaluated. Damage thresholds from TTF-1 and

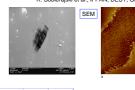
estimated values for the VUV-FEL and XFEL indicate the

need for novel coatings (C, Be) and manufacturing

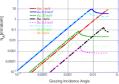
ematic and cut away FEM model

ŝ

undulato

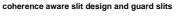

ource

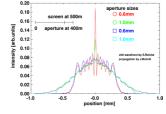
A single translation stage carrying four crystals changes the relative path lengths in this configuration by:


-650 m -690 m

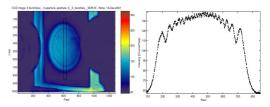
power: focused beams

Deliberate Damage of C coatings in the focused TTF1 beam R. Sobierajski et al., IFPAN, DESY, GKSS




Dose per atom as function of the grazing incindence angle for various materials and photon energies in a focused XFEL beam. (LCLS-CDR)

coherence preservation


mirror with slope error $\ \leq 1 \mu rad$ and roughness ~1Å RMS

perfect crystals

The effect of apertures on the XFEL photon beam.

Experiences at TTF-1: 5 mm aperture, 12m from source.

Ce:Yag screen 3m behind aperture. Beam diameter 3mm

responsible author: Horst Schulte-Schrepping, DESY horst.schulte-schrepping@desy.de, Oct 2003

Distribution of lattice tilts of a 10x12mm² diamond (111) crystal

(courtesy A. Freund ESRF)

photon beam timing: time-delay

320

65