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Introduction:
X-ray FELs will be the first accelerator projects with key performance depending Start-to-End Simulations
exponentially on beam quality:
Beam dynamics for the high intensity bunches of a SASE FEL driver linac is dominated by self-

Prag = Poexp(Z/L ) induced fields:

- Space Charge Fields

- L DLV, mjé !f o ﬁgfff Eﬂ?ﬂg,ﬂf”g‘h - Coherent Synchrotron Radiation Fields
R 0 4miK? 0 o,: Transverse beam size - Wake Fields

As all these depend on details of the longitudinal bunch profile and there is no ‘memory-erasing’

Thus, the reliable understanding of beam dynamics is of paramount importance. device like a damping ring, we need to trace the bunch from cathode to undulator.

Simulation Tools:

) ) ) Benchmarking Efforts:
Injector & space charge dominated sections:

ASTRA or PARMELA (cylindrically symmetric bunch; space charge Code Comparison for Simulations of Photo-Injectors
computed using a cylindrical mesh). Point-like particles. C. Limborg SLAC, Y.K. Batygin SLAC , J.-P. Carneiro, K. Floettmann DESY , L. Giannessi,
Bending systems (bunch compressors): M. Quattromini Ente Nazionale per le Nuove Tecnologie I'Energia e 'Ambiente , M. Boscolo,
CSRtrack (Gaussian macro-particles for simulation of Coherent M. Ferrario, V. Fusco, C. Ronsivalle
Synchrotron Radiation fields from first principles) or elegant (1-D model, Published at PAC 2003
pointlike particles).
Emittance-Dominated Transport: ICFA Mini-Workshop on CSR Calculation Benchmarking, Zeuthen 2002

elegant (takes into account geometric wakes (TESLA cavities) and
resistive wakes). Point-like particles.
SASE-FEL:
GENESIS or FAST

ICFA Mini-Workshop on Benchmarking of Start-to-End Calculations, Zeuthen 2003

... Results of TESLA XFEL S2E calculations . Required Beam Parameters for the XFEL project with 1.0 A X-ray wavelength

Beam Energy >20.0 GeV Transverse Slice Normalized RMS Emittance < 1.4 um
Peak Current >5.0 kA Slice Relative RMS Energy Spread < 0.0125%
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Radiated power along the bunch at saturation

Jitter: CSR and Space Charge Driven Instabilities:
*S2E” Study of Linac for TESLA XFEL , P. Emma il U = 1000.¢ /= 1000 Focrgy disbtion (0/F,-07103%) Increase uncorrelated energy
3 p

CSR benchmark i ilities:

- N Gain Curve for the XFEL spread to cure instabilities:
i ~. chicane (Berlin CSR 10000 —— Produce a FEL type modulation of the beam
o > Workshop, Jan. 2002) \ /» Srlulated gan vithout in the optical wavelength range by a laser

Scan gun-laser timing and charge,
monitoring energy and peak current

Compile Jitter budget

untorr. energy spread pulse acting on the beam in an undulator.

_ P.E \ Afterwards the beam goes through a bunch
3 o - Emma \ compressor where these coherent energy

N 1o 1000

S p— modulations are quickly dissipated, leading o
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uncorr. ehergy spread an effective "heating” of the beam. A similar
mechanism takes place in storage ring FELS.

A numerical example for TTF2 (possibly for
T ey I |1 the XFEL):
The undulator with ten periods, a period
— length 3 cm, and a peak field 0.49 T is located
000 Bt 1025 sl i | | In front of BCL A fraction of power in the
S = —— T 10 1 second harmonic (A = 0.52um) of the Nd:YLF
~1pm | E oo | laser is outcoupled from the Photoinjector
. M‘M Y | laser system and is transported to the
op/Ey ~ 2x10™ % F | L edtytical gainwith ‘ ‘ undulator. For a transverse size of the laser
e
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A=10% o 5 " o s 0 power of 300 kW, the amplitude of energy

Responsible Author: Torsten.Limberg@desy.de, Oct 2003 s 0 om o o om modulation will be about 20 keV (rms energy
s (1 =0.78) tam wavelength [um] spread is smaller by ¥2)
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Topicsfor further investigation using S2E simulations:

Jitter:
‘S2E’ Study of Linac for TESLA XFEL , P. Emma

Scan gun-laser timing and charge, monitoring energy and peak current Set up timing jitter budget, compare LCLS and TESLA XFEL
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CSR driven Instabilities:
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Space Charge Driven I nstability:

E. Schneidmiller: Gain Curve for TTF-2 and Consequences Increasing Uncorrelated Energy Spread to Suppress Instability

What happens next? « Maximum gain is very sensitive to the local energy spread. Instability in TTF2 linac
300 Assume initial modulation at the "optimal” wavelength to be 10-3. This could be strongly suppressed if the initial energy spread would be 15-20 keV.
results in 30 % density modulation at a wavelength of 10pm after BC2. . i . .
5200 « LCLS: A super-conducting wiggler (at 4.5 GeV) is going to be used to control
G 150 - - energy spread. This method does not work at relatively low energies.
1 Consequences:
50 * Emittance growth in last dipole(s) of BC2 « We suggest another method: FEL type modulation of the beam in optical

wavelength range by a laser pulse in an undulator. Then the beam goes through the
bunch compressor where these coherent energy modulations are quickly dissipated,
leading to the effective "heating” of the beam. Similar mechanism takes place in
storage ring FELSs.
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« LSC in BC2 to undulator section. For a final energy of 1 GeV
the impedance is |Z|/Z0 = 200. That means about 4 MeV energy
modulation (+2sigma). Also, local energy spread is growing.

e Total gain versus initial modulation wavelength

A numerical example for TTF2 (possibly for DESY-XFEL):

The undulator with ten periods, a period length 3 cm, and a peak field 0.49 T is
located in front of

BCI. A fraction of

Conclusion: for reliable operation of the facility one should keep initial
modulations well below 10-3 level. Or suppress amplification.

S2E Statusand Plans:

responsible author:
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What should we do?

Full S2E required (incl. plasma oscillations at low energy, CSR in BCs,
other wake fields). Studies of noise sources in the gun.

Laser pulse should be as smooth as possible. One might even refuse the
concept of flat-top pulse with small rise/fall time (which is good for
projected emittance, but not necessarily for central slices).

20.5GeV
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(wake-fields, 1D CSR, no space charge)

" CSRtrack in compressors, elegant in linac "
(wake-fields, 3D CSR, no space charge)

" CSRtrack in compressors, ASTRA/PARMELA inlinac "
(wake-fields, 3D CSR, space charge)

ower in the second harmonic (A = 0.52pum) of the Nd:YLF laser
is outcoupled from tﬁe photoinjector laser system and is transported to the undulator.
For a transverse size of the laser beam 0.5 mm (Rayleigh length is 1.5 m) and a
power of 300 kW, the amplitude of energy modulation will be about 20 keV (rms
energy spread is smaller by V2).

- First complete S2E simulations for XFEL are done (Zeuthen
benchmarking example)

- Need further study on theimpact of CSR and space charge
driven instabilities

- Will use S2E simulation to optimizejitter tolerances



