

Accelerator Layout and Parameters

R. Brinkmann, DESY

TESLA TDR March 2001: *integrated* XFEL

TESLA

The Superconducting Electron-Positron Linear Collider with an Integrated X-Ray Laser Laboratory **Technical Design Report**

ESFRI XFEL Workshop 30./31.10.2003

Basis for TDR: high-performance sc cavities

Update 2002: separate XFEL linac

R. Brinkmann

Update 2002 cont'd

de-coupling LC - XFEL regarding construction & operation (and: *approval*), maintaining common site; keep cost close to TDR2001 figure by reduction of (1st stage) energy to 20 GeV, # of beam lines 10 → 5

Parameters 1Å SASE, fixed gap undulator:

	E₅ [GeV]	د [10 ⁻⁶ m]	σ _E [MeV]	I _{pk} [kA]	λ _U [mm]	Κ _U	gap [mm]	L _{sat} [m]	L _{tot} [m]
TDR2001	25	1.6	2.5	5	45	4	12	210	311
Update02	20	1.4	2.5	5	38	3.8	10	145	213

(FEL process & parameters: \rightarrow talk by M. Yurkov)

- Choice of DESY-near site de-coupled from TESLA LC
- Linac in TTF-like technology, 20 GeV at 23 MV/m, abandon length reserve, optional higher energy from improved cavity performance
- Investigation of operating parameter flexibility, in particular regarding duty cycle / repetition rate

Present accelerator layout

ESFRI XFEL Workshop 30./31.10.2003

Accelerator layout cont'd

R. Brinkmann

Linac tunnel layout

Accelerator housed in a ~5m diameter tunnel ~12m underground

Klystron in tunnel are connected to modulators in external hall by 10kV pulse cables

Two options for tunnel layout being reviewed

Figure 3. Main LINAC, Damping Ring & Klystron Station

ESFRI XFEL Workshop 30./31.10.2003

Reference parameters

Main linac					
Energy gain	0.5 → 20 GeV				
# installed modules	116				
# active modules	104				
acc gradient	22.9 MV/m				
# installed klystrons	29				
Bunch spacing	200 ns				
beam current	5 mA				
power→beam p. klystron	3.8 MW				
incl. 10% + 15% overhead	4.8 MW				
matched Q _{ext}	4.6·10 ⁶				
RF pulse	1.37 ms				
Beam pulse	0.65 ms				
Rep. rate	10 Hz				
Av. Beam power *	650 kW				
Total AC power	≈ 9 MW				

* Power limitation to ~300kW per beamline \rightarrow solid beam dump possible

R. Brinkmann

Parameter flexibility: rep rate

- At 20 GeV: cryogenic plant 3 times capacity of 500 GeV TESLA LC... unreasonable!
- At lower energy: worth a serious thought...consider following option for low-current, CW-mode (e.g. 1nC bunches at 10kHz):
 - At 23MV/m power per cavity is 30kW at ~zero beam current
 - − Energy/sqrt(10) (because of cryogenics) \rightarrow power per cavity 3kW
 - − Increase Q_ext ~ factor $3 \rightarrow$ power <1kW (+regulation reserve)
 - → linac can deliver ~6GeV CW beam without modifications except for (of course) additional RF system with ~50kW CW klystrons (or: IOTs)
- careful: we don't have a suitable injector yet!
- No need to rule out ERL-type of operation in further distant future except for few basic considerations, can't be focus of attention for next years

(some of the) Accelerator sub-systems

- Photocathode RF gun and bunch compressors: generate and preserve excellent beam quality (peak current 5kA, normalised transverse emittance 1.4 mrad*mm) (→ talks by K. Flöttmann, W. Sandner, poster session)
- Beam delivery system: (\rightarrow poster session)
 - Beam collimation: protect undulators from halo and mis-steered beams
 - Diagnostics: determination of beam properties in 6D phase space with complex structure
 - Beam distribution: slow and fast devices for multi-user operation
 - Feedback systems: intra-train stabilisation (position, energy, timing, ...) using "pilot bunches"

Beam distribution options

- Straight forward and simple: pulse-to-pulse switch magnet
- Much better, but more challenging: fast (intra-train) kickers

Different users – different time structures

• Generation of bunch train patterns:

- At the source → varying transient effects in the entire accelerator (handled e.g. by the LLRF system)
- At the beam delivery/distribution system → more challenging kicker devices

ESFRI XFEL Workshop 30./31.10.2003

One source of jitter: ground motion

R. Brinkmann

Intra-train beam stabilisation

- From ground vibration: jitter ~ 0.1σ at end of linac
 - Can be enhanced during "single events" e.g. heavy traffic, and by quad support eigenmodes
 - Other effects: stray fields, HOMs, ...
- \rightarrow feedback system between linac and distribution to undulators

Also active stabilisation of energy and possibly other beam parameters

Conclusions

- The 20 GeV s.c. linac based on the technology developed by the TESLA collaboration and successfully demonstrated at TTF is an ideal driver for the Free Electron Laser facility – offering a broad range of operating parameters in its baseline design *and* with future upgrade options
- Experience at test facilities creates a solid ground also for the design of other accelerator sub-systems (injector, bunch compressors, diagnostics, feedback systems, ...) of the XFEL
- The project preparation is well under way and will lead into the construction phase in ~ two years from now